EconPapers    
Economics at your fingertips  
 

Electric Vehicles Charging Management Using Machine Learning Considering Fast Charging and Vehicle-to-Grid Operation

Mostafa Shibl, Loay Ismail and Ahmed Massoud
Additional contact information
Mostafa Shibl: Department of Electrical Engineering, Qatar University, Doha 2713, Qatar
Loay Ismail: Department of Computer Science and Engineering, Qatar University, Doha 2713, Qatar
Ahmed Massoud: Department of Electrical Engineering, Qatar University, Doha 2713, Qatar

Energies, 2021, vol. 14, issue 19, 1-22

Abstract: Electric vehicles (EVs) have gained in popularity over the years. The charging of a high number of EVs harms the distribution system. As a result, increased transformer overloads, power losses, and voltage fluctuations may occur. Thus, management of EVs is required to address these challenges. An EV charging management system based on machine learning (ML) is utilized to route EVs to charging stations to minimize the load variance, power losses, voltage fluctuations, and charging cost whilst considering conventional charging, fast charging, and vehicle-to-grid (V2G) technologies. A number of ML algorithms are contrasted in terms of their performances in optimization since ML has the ability to create accurate future decisions based on historical data, which are Decision Tree (DT), Random Forest (RF), Support Vector Machine (SVM), K-Nearest Neighbours (KNN), Long Short-Term Memory (LSTM) and Deep Neural Networks (DNN). The results verify the reliability of the use of LSTM for the management of EVs to ensure high accuracy. The LSTM model successfully minimizes power losses and voltage fluctuations and achieves peak shaving by flattening the load curve. Furthermore, the charging cost is minimized. Additionally, the efficiency of the management system proved to be robust against the uncertainty of the load data that is used as an input to the ML system.

Keywords: decision tree; deep neural networks; long short-term memory; distribution grid optimization; machine learning; K-nearest neighbors; electric vehicle charging; random forest; support vector machine; vehicle to grid (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (5)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6199/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6199/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6199-:d:645508

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6199-:d:645508