A Novel Approach of Design and Analysis of a Hexagonal Fractal Antenna Array (HFAA) for Next-Generation Wireless Communication
Satheeshkumar Palanisamy,
Balakumaran Thangaraju,
Osamah Ibrahim Khalaf,
Youseef Alotaibi,
Saleh Alghamdi and
Fawaz Alassery
Additional contact information
Satheeshkumar Palanisamy: Department of ECE, Coimbatore Institute of Technology, Coimbatore 641014, Tamilnadu, India
Balakumaran Thangaraju: Department of ECE, Coimbatore Institute of Technology, Coimbatore 641014, Tamilnadu, India
Osamah Ibrahim Khalaf: Al-Nahrain Nano-Renewable Energy Research Center, Al-Nahrain University, Baghdad 10072, Iraq
Youseef Alotaibi: Department of Computer Science, College of Computer and Information Systems, Umm Al-Qura University, Makkah 21955, Saudi Arabia
Saleh Alghamdi: Department of Information Technology, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia
Fawaz Alassery: Department of Computer Engineering, College of Computers and Information Technology, Taif University, Taif 21944, Saudi Arabia
Energies, 2021, vol. 14, issue 19, 1-18
Abstract:
The study and exploration of massive multiple-input multiple-output (MMIMO) and millimeter-wave wireless access technology has been spurred by a shortage of bandwidth in the wireless communication sector. Massive MIMO, which combines antennas at the transmitter and receiver, is a key enabler technology for next-generation networks to enable exceptional spectrum and energy efficiency with simple processing techniques. For massive MIMOs, the lower band microwave or millimeter-wave band and the antenna are impeccably combined with RF transceivers. As a result, the 5G wireless communication antenna differs from traditional antennas in many ways. A new concept of the MIMO tri-band hexagonal antenna array is being introduced for next-generation cellular networks. With a total scaling dimension of 150 × 75 mm 2 , the structure consists of multiple hexagonal fractal antenna components at different corners of the patch. The radiating patch resonates at 2.55–2.75, 3.45–3.7, and 5.65–6.05 GHz (FR1 band) for better return loss (S11) of more than 15 dB in all three operating bands. The coplanar waveguide (CPW) feeding technique and defective ground structure in the ground plane have been employed for effective impedance matching. The deviation of the main lobe of the radiation pattern is achieved using a two-element microstrip Taylor antenna array with series feeding, which also boosts the antenna array’s bandwidth and minimizes sidelobe. The proposed antenna is designed, simulated, and tested in far-field radiating conditions and generates tri-band S-parameters with sufficient separation and high-quality double-polarized radiation. The fabrication and testing of MIMO antennas were completed, where the measurement results matched the simulation results. In addition, the 5G smartphone antenna system requires a new, lightweight phased microwave antenna (μ-wave) with wide bandwidth and a fire extender. Because of its decent performance and compact architectures, the proposed smartphone antenna array architecture is a better entrant for upcoming 5G cellular implementations.
Keywords: 5G; multiband antenna system; antenna array; future handsets; smartphone antenna; defective ground surface (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6204/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6204/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6204-:d:645692
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().