EconPapers    
Economics at your fingertips  
 

Evaluation of Supervised Learning Models in Predicting Greenhouse Energy Demand and Production for Intelligent and Sustainable Operations

Laila Ouazzani Chahidi, Marco Fossa, Antonella Priarone and Abdellah Mechaqrane
Additional contact information
Laila Ouazzani Chahidi: SIGER, Intelligent Systems, Georesources and Renewable Energies Laboratory, Faculty of Sciences and Techniques of Fez, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez 30050, Morocco
Marco Fossa: DIME, Mechanical Energy, Management and Transportation Engineering Department, University of Genoa, Via Opera Pia 15a, 116145 Genova, Italy
Antonella Priarone: DIME, Mechanical Energy, Management and Transportation Engineering Department, University of Genoa, Via Opera Pia 15a, 116145 Genova, Italy
Abdellah Mechaqrane: SIGER, Intelligent Systems, Georesources and Renewable Energies Laboratory, Faculty of Sciences and Techniques of Fez, Sidi Mohamed Ben Abdellah University, P.O. Box 2202, Fez 30050, Morocco

Energies, 2021, vol. 14, issue 19, 1-15

Abstract: Plants need a specific environment to grow and reproduce in fine fettle. Nevertheless, climatic conditions are not stable and can impact their well-being and, consequently, harvest quality. Thus, greenhouse cultivation is one of the suitable agricultural techniques for creating and controlling the inside microclimate to be adequate for plant growth. The relevance of greenhouse control is widely recognized. The prediction of greenhouse variables using artificial intelligence methods is of great interest for intelligent control and the potential reduction in energetic and financial losses. However, the studies carried out in this context are still more or less limited and several machine learning methods have not been sufficiently exploited. The aim of this study is to predict the air conditioning electrical consumption and photovoltaic module electrical production at the smart Agro-Manufacturing Laboratory (SamLab) greenhouse, located in Albenga, north-western Italy. Different supervised machine learning methods were compared, namely, Artificial Neural Networks (ANNs), Gaussian Process Regression (GPR), Support Vector Machine (SVM) and Boosting trees. We evaluated the performance of the models based on three statistical indicators: the coefficient of correlation (R), the normalized root mean square error (nRMSE) and the normalized mean absolute error (nMAE). The results show good agreement between the measured and predicted values for all models, with a correlation coefficient R > 0.9, considering the validation set. The good performance of the models affirms the importance of this approach and that it can be used to further improve greenhouse efficiency through its intelligent control.

Keywords: agricultural greenhouse; energy prediction; ANN; GPR; SVM; Boosting trees (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6297/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6297/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6297-:d:648959

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:19:p:6297-:d:648959