Analysis of Unidirectional Secondary Resonant Single Active Bridge DC–DC Converter
Cao Anh Tuan and
Takaharu Takeshita
Additional contact information
Cao Anh Tuan: Electrical and Mechanical Engineering Department, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
Takaharu Takeshita: Electrical and Mechanical Engineering Department, Nagoya Institute of Technology, Gokiso-cho, Showa-ku, Nagoya 466-8555, Japan
Energies, 2021, vol. 14, issue 19, 1-19
Abstract:
A compact and highly efficient unidirectional DC–DC converter is required as a battery charger for electrical vehicles, which will rapidly become widespread in the near future. The single active bridge (SAB) converter is proposed as a simple and high-frequency isolated unidirectional converter, which is comprised of an active H-bridge converter in the primary side, an isolated high frequency transformer, and a rectifying secondary diode bridge output circuit. This paper presents a novel, unidirectional, high-frequency isolated DC–DC converter called a Secondary Resonant Single Active Bridge (SR–SAB) DC–DC converter. The circuit topology of the SR–SAB converter is a resonant capacitor connected to each diode in parallel in order to construct the series resonant circuit in the secondary circuit. As a result, the SR–SAB converter achieves a higher total power factor at the high frequency transformer and a unity voltage conversion ratio under the unity transformer turns ratio. Small and nonsignificant overshoot values of current and voltage waveforms are observed. Soft-switching commutations of the primary H-bridge circuit and the soft recovery of secondary diode bridge are achieved. The operating philosophy and design method of the proposed converter are presented. Output power control using transformer frequency variation is proposed. The effectiveness of the SR–SAB converter was verified by experiments using a 1 kW, 48 VDC, and 20 kHz laboratory prototype.
Keywords: secondary resonant single active bridge (SR–SAB) converter; battery charger; DC–DC converter; isolated converter; soft switching; unidirectional converter (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6349/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6349/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6349-:d:649988
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().