Time-Dependent Upper Limits to the Performance of Large Wind Farms Due to Mesoscale Atmospheric Response
Kelan Patel,
Thomas D. Dunstan and
Takafumi Nishino
Additional contact information
Kelan Patel: Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Thomas D. Dunstan: Met Office, FitzRoy Road, Exeter EX1 3PB, UK
Takafumi Nishino: Department of Engineering Science, University of Oxford, Parks Road, Oxford OX1 3PJ, UK
Energies, 2021, vol. 14, issue 19, 1-16
Abstract:
A prototype of a new physics-based wind resource assessment method is presented, which allows the prediction of upper limits to the performance of large wind farms (including the power loss due to wind farm blockage) in a site-specific and time-dependent manner. The new method combines the two-scale momentum theory with a numerical weather prediction (NWP) model to assess the “extractability” of wind, i.e., how high the wind speed at a given site can be maintained as we increase the number of turbines installed. The new method is applied to an offshore wind farm site in the North Sea to demonstrate that: (1) Only a pair of NWP simulations (one without wind farm and the other with wind farm with an arbitrary level of flow resistance) are required to predict the extractability. (2) The extractability varies significantly from time to time, which may cause more than 30% of change in the upper limit of the performance of medium-to-high-density offshore wind farms. These results suggest the importance of considering not only the natural wind speed but also its extractability in the prediction of (both long- and short-term) power production of large wind farms.
Keywords: actuator disc theory; momentum theory; numerical weather prediction; wind farm blockage; wind resource assessment (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/19/6437/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/19/6437/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:19:p:6437-:d:652040
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().