EconPapers    
Economics at your fingertips  
 

The Impact of Ambient Sensing on the Recognition of Electrical Appliances

Jana Huchtkoetter, Marcel Alwin Tepe and Andreas Reinhardt
Additional contact information
Jana Huchtkoetter: Department of Informatics, TU Clausthal, 38678 Clausthal-Zellerfeld, Germany
Marcel Alwin Tepe: Department of Informatics, TU Clausthal, 38678 Clausthal-Zellerfeld, Germany
Andreas Reinhardt: Department of Informatics, TU Clausthal, 38678 Clausthal-Zellerfeld, Germany

Energies, 2021, vol. 14, issue 1, 1-23

Abstract: Smart spaces are characterized by their ability to capture a holistic picture of their contextual situation. This often includes the detection of the operative states of electrical appliances, which in turn allows for the recognition of user activities and intentions. For electrical appliances with largely different power consumption characteristics, their types and operational times can be easily inferred from data collected at a single metering point (typically, a smart meter). However, a disambiguation between consumers of the same type and model, yet located in different areas of a smart building, is not possible this way. Likewise, small consumers (e.g., wall chargers) are often indiscernible from measurement noise and spurious power consumption events of other appliances. As a consequence thereof, we investigate how additional sensing modalities, i.e., data beyond electrical signals, can be leveraged to improve the appliance detection accuracy. Through a set of practical experiments, recording ambient influences in eight dimensions and testing their effects on 21 appliance types, we evaluate the importance of such added features in the context of appliance recognition. Our results show that electrical power measurements already yield a high appliance recognition accuracy, yet further accuracy improvements are possible when considering ambient parameters as well.

Keywords: appliance load signatures; ambient influences; device classification accuracy (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/1/188/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/1/188/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:1:p:188-:d:473649

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:188-:d:473649