EconPapers    
Economics at your fingertips  
 

Open-Circuit Fault-Tolerant Control of Multi-Phase PM Machines by Compensating the d-q Axes Currents

Ali Akay and Paul Lefley
Additional contact information
Ali Akay: School of Engineering, University of Leicester, Leicester LE1 7RH, UK
Paul Lefley: School of Engineering, University of Leicester, Leicester LE1 7RH, UK

Energies, 2021, vol. 14, issue 1, 1-18

Abstract: This paper presents a novel method to control sinusoidal distributed winding or sinusoidal back electromotive force (back-EMF) multi-phase permanent magnet (PM) machines under open-circuit fault conditions. In this study, five different fault conditions are considered: single-phase, adjacent double-phase, non-adjacent double-phase, adjacent three-phase, and non-adjacent three-phase open circuit conditions. New current sets for the remaining healthy phase under open-circuit fault conditions are obtained by compensating the direct-quadrature (d-q) axes currents. For this purpose, an iterative method has been used to get the new set of currents. D-q axes currents, due to faulty phase/phases, are shared to the healthy phases to obtain the same d-q axes currents as in the healthy condition. Therefore, the same torque is produced as in the healthy condition. The developed method is simulated in MATLAB/Simulink by using a d-q modelled sinusoidal back-EMF five-phase machine. A vector control block diagram has been designed to run the machine under healthy and faulty conditions. The machine model has been run successfully under fault tolerant conditions. Additionally, a finite element analysis (FEA) has been undertaken to simulate the five-phase PM model machine by using MagNet software. Open-circuit fault-tolerant control currents are fed into the coils of the machine model. Satisfactory torque results have been obtained. Because the model five-phase PM machine includes higher order back-EMF harmonics, especially the third harmonic, torque has ripple due to interaction between the fault-tolerant control currents and the higher order back-EMF harmonics.

Keywords: open-circuit fault-tolerant; permanent magnet machines; multi-phase machines; five-phase machine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/1/192/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/1/192/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:1:p:192-:d:473691

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:1:p:192-:d:473691