Multiscale Decision-Making for Enterprise-Wide Operations Incorporating Clustering of High-Dimensional Attributes and Big Data Analytics: Applications to Energy Hub
Falah Alhameli,
Ali Ahmadian and
Ali Elkamel
Additional contact information
Falah Alhameli: Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Ali Ahmadian: Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Ali Elkamel: Department of Chemical Engineering, University of Waterloo, Waterloo, ON N2L 3G1, Canada
Energies, 2021, vol. 14, issue 20, 1-17
Abstract:
In modern systems, there is a tendency to model issues more accurately with low computational cost and considering multiscale decision-making which increases the complexity of the optimization. Therefore, it is necessary to develop tools to cope with these new challenges. Supply chain management of enterprise-wide operations usually involves three decision levels: strategic, tactical, and operational. These decision levels depend on each other involving different time scales. Accordingly, their integration usually leads to multiscale models that are computationally intractable. In this work, the aim is to develop novel clustering methods with multiple attributes to tackle the integrated problem. As a result, a clustering structure is proposed in the form of a mixed integer non-linear program (MINLP) later converted into a mixed integer linear program (MILP) for clustering shape-based time series data with multiple attributes through a multi-objective optimization approach (since different attributes have different scales or units) and minimize the computational complexity of multiscale decision problems. The results show that normal clustering is closer to the optimal case (full-scale model) compared with sequence clustering. Additionally, it provides improved solution quality due to flexibility in terms of sequence restrictions. The developed clustering algorithms can work with any two-dimensional datasets and simultaneous demand patterns. The most suitable applications of the clustering algorithms are long-term planning and integrated scheduling and planning problems. To show the performance of the proposed method, it is investigated on an energy hub as a case study, the results show a significant reduction in computational cost with accuracies ranging from 95.8% to 98.3%.
Keywords: multiscale decision making; big data analytics; planning and scheduling; clustering; supply chain; multiple attributes; computational complexity; energy hub (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/20/6682/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/20/6682/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:20:p:6682-:d:656835
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().