EconPapers    
Economics at your fingertips  
 

A Comparative Analysis of the ARIMA and LSTM Predictive Models and Their Effectiveness for Predicting Wind Speed

Meftah Elsaraiti and Adel Merabet
Additional contact information
Meftah Elsaraiti: Division of Engineering, Saint Mary’s University, Halifax, NS B3H 3C3, Canada
Adel Merabet: Division of Engineering, Saint Mary’s University, Halifax, NS B3H 3C3, Canada

Energies, 2021, vol. 14, issue 20, 1-16

Abstract: Forecasting wind speed has become one of the most attractive topics to researchers in the field of renewable energy due to its use in generating clean energy, and the capacity for integrating it into the electric grid. There are several methods and models for time series forecasting at the present time. Advancements in deep learning methods characterize the possibility of establishing a more developed multistep prediction model than shallow neural networks (SNNs). However, the accuracy and adequacy of long-term wind speed prediction is not yet well resolved. This study aims to find the most effective predictive model for time series, with less errors and higher accuracy in the predictions, using artificial neural networks (ANNs), recurrent neural networks (RNNs), and long short-term memory (LSTM), which is a special type of RNN model, compared to the common autoregressive integrated moving average (ARIMA). The results are measured by the root mean square error (RMSE) method. The comparison result shows that the LSTM method is more accurate than ARIMA.

Keywords: ARIMA; forecasting; LSTM; wind speed (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (10)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/20/6782/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/20/6782/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:20:p:6782-:d:658694

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:20:p:6782-:d:658694