Significant Increase in Fuel Efficiency of Diesel Generators with Lithium-Ion Batteries Documented by Economic Analysis
Vedat Kiray,
Mehmet Orhan and
John Nwankwo Chijioke
Additional contact information
Vedat Kiray: Energy Management Program, Vistula University, 02-787 Warsaw, Poland
Mehmet Orhan: Department of Economics, Finance & Healthcare Administration, Langdale College of Business Administration, Valdosta State University, Valdosta, GA 31698, USA
John Nwankwo Chijioke: Electrical and Electronics Engineering Department, Nile University of Nigeria, Abuja 900001, Nigeria
Energies, 2021, vol. 14, issue 21, 1-21
Abstract:
As the global diesel generator market grows and generators gain wider use, various methods are being developed to increase their energy efficiency. One of these methods entails integrating a Li-ion battery with diesel generators (DGs). This method did not attract attention until recently because it was economically unappealing. A significant decrease in the price of Li-ion batteries in recent years has made hybrid diesel generator/Li-ion battery systems more viable. We present a model-based economic analysis of a hybrid DG/Li-ion battery system with the aim of increasing the energy efficiency of diesel power generators. Special blocks were developed for calculations and comparisons with a MATLAB Simulink model, including 457 kW DG operating modes with/without a Li-ion battery. We simulated the system in order to calculate the conditions required to achieve savings in fuel and the level of savings, in addition to the payback time of the Li-ion battery. Furthermore, we present the additional savings gained by postponing the investment in a new diesel generator thanks to the Li-ion battery. Based on our findings, the payback period of the Li-ion battery system varies between 2.5 and 4 years. According to our 12-year economic analysis, the cost savings resulting from postponing new investments can reach 40% of the profit gained from the savings during such a period.
Keywords: diesel generators; economic analysis; Li-ion battery; fuel efficiency; MATLAB Simulink (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/6904/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/6904/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:6904-:d:661345
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().