Meticulously Intelligent Identification System for Smart Grid Network Stability to Optimize Risk Management
Qasem Abu Al-Haija,
Abdallah A. Smadi and
Mohammed F. Allehyani
Additional contact information
Qasem Abu Al-Haija: Department Computer Science/Cybersecurity, Princess Sumaya University for Technology (PSUT), Amman 11941, Jordan
Abdallah A. Smadi: Department of Electrical and Computer Engineering, University of Idaho, Moscow, ID 83844, USA
Mohammed F. Allehyani: Department of Electrical Engineering, University of Tabuk, Tabuk 47512, Saudi Arabia
Energies, 2021, vol. 14, issue 21, 1-19
Abstract:
The heterogeneous and interoperable nature of the cyber-physical system (CPS) has enabled the smart grid (SG) to operate near the stability limits with an inconsiderable accuracy margin. This has imposed the need for more intelligent, predictive, fast, and accurate algorithms that are able to operate the grid autonomously to avoid cascading failures and/or blackouts. In this paper, a new comprehensive identification system is proposed that employs various machine learning architectures for classifying stability records in smart grid networks. Specifically, seven machine learning architectures are investigated, including optimizable support vector machine (SVM), decision trees classifier (DTC), logistic regression classifier (LRC), naïve Bayes classifier (NBC), linear discriminant classifier (LDC), k-nearest neighbor (kNN), and ensemble boosted classifier (EBC). The developed models are evaluated and contrasted in terms of various performance evaluation metrics such as accuracy, precision, recall, harmonic mean, prediction overhead, and others. Moreover, the system performance was evaluated on a recent and significant dataset for smart grid network stability (SGN_Stab2018), scoring a high identification accuracy (99.90%) with low identification overhead (4.17 μSec) for the optimizable SVM architecture. We also provide an in-depth description of our implementation in conjunction with an extensive experimental evaluation as well as a comparison with state-of-the-art models. The comparison outcomes obtained indicate that the optimized model provides a compact and efficient model that can successfully and accurately predict the voltage stability margin (VSM) considering different operating conditions, employing the fewest possible input features. Eventually, the results revealed the competency and superiority of the proposed optimized model over the other available models. The technique also speeds up the training process by reducing the number of simulations on a detailed power system model around operating points where correct predictions are made.
Keywords: identification accuracy; identification overhead; machine learning; risk management; smart grid; support vector machines; voltage stability; predictive model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/6935/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/6935/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:6935-:d:661990
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().