Performance of Ice Generation System Using Supercooled Water with a Directed Evaporating Method
Mingbiao Chen,
Dekun Fu,
Wenji Song and
Ziping Feng
Additional contact information
Mingbiao Chen: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Dekun Fu: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Wenji Song: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Ziping Feng: Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China
Energies, 2021, vol. 14, issue 21, 1-14
Abstract:
Ice slurry is widely used in the field of ice storage air conditioning, district cooling, seafood preservation, and milk processing. Ice generation using supercooled water is efficient, and the system structure is compact. However, a secondary refrigerant cycle is usually used in order to control the wall temperature and to prevent the “ice blocking” problem. Therefore, an ice generation system using supercooled water with a directed evaporating method is proposed and fabricated in order to improve the system performance, which is tested in the experiment. Then, two calculation methods are used to study the performance of entire ice generation system. We concluded that: (1) The system could run steady without “ice blocking” in the condition where the supercooled water temperature was higher than 271.7 K and the velocity was more than 2.1 m/s. The entire system COP could reach 1.6 when the condenser temperature was about 319 K. (2) The system COP could be improved by about 20% if the compressor output power was based on the theoretical refrigerant cycle. The system COP could reach about 2.5 if the proportion of extra power was 3% and the condenser temperature was 308 K. (3) The system COP with a directed evaporating method was about 14% higher than that with an indirected evaporating method. (4) An orthogonal test was built to quantify the influence of different critical parameters. The influence of factors on the system COP were as follows: condenser temperature > water flow > adiabatic compressibility > refrigerant. This work provided a good look at the performance of an ice generation system using supercooled water with a directed evaporating method. It can play an important role in guiding the design of a system of ice generation using supercooled water.
Keywords: ice slurry; supercooled water; system performance; directed evaporating (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7021/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7021/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7021-:d:665472
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().