Efficiency Comparison between Two Masonry Wall Drying Devices Using In Situ Data Measurements
Piotr Łapka and
Łukasz Cieślikiewicz
Additional contact information
Piotr Łapka: Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., 00-665 Warsaw, Poland
Łukasz Cieślikiewicz: Institute of Heat Engineering, Faculty of Power and Aeronautical Engineering, Warsaw University of Technology, 21/25 Nowowiejska St., 00-665 Warsaw, Poland
Energies, 2021, vol. 14, issue 21, 1-14
Abstract:
In this paper, an in situ investigation and comparison of energy consumption and efficiency of two devices for implementation of the thermo-injection masonry wall drying method are presented. The following drying devices were considered: the currently used device (CUD) and the novel prototype device (NPD) with optimized control of the operating parameters. The historic building subjected to the drying and renovation was located in the city of Łowicz (Poland). The temperature and relative humidity of the air in several points in the basement and the temperature and moisture content at various locations in the considered masonry wall segments, as well as the electrical parameters for both devices, were measured in the real time and registered by applying a dedicated data acquisition system. The specific energy consumption during drying, defined as the energy consumption divided by the length of the drying wall section and by the mean volumetric moisture content change in the wall, was equal to 16.58 and 10.44 kWh/m/moisture content vol.% for the CUD and NPD, respectively. Moreover, the moisture content in the wall decreased by an average of 2.13 and 3.22 vol.% for the CUD and NPD, respectively, while the temperature of the wall surface in the drying zone was increased to approximately 35–40 °C and 40–65 °C for the CUD and NPD, respectively. The obtained results showed that the NPD was much more efficient than the CUD and that the building renovation process may be more environmentally friendly by applying more efficient drying devices and strategies.
Keywords: drying of masonry wall; drying device; in situ measurements; masonry wall; thermo-injection method; wet wall (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7137/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7137/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7137-:d:669745
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().