EconPapers    
Economics at your fingertips  
 

Silicon Particles/Black Paint Coating for Performance Enhancement of Solar Absorbers

Shwe Sin Han, Usman Ghafoor, Tareq Saeed, Hassan Elahi, Usman Masud, Laveet Kumar, Jeyraj Selvaraj and Muhammad Shakeel Ahmad
Additional contact information
Shwe Sin Han: Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R & D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia
Usman Ghafoor: Department of Mechanical Engineering, Institute of Space Technology, Islamabad 44000, Pakistan
Tareq Saeed: Nonlinear Analysis and Applied Mathematics (NAAM)-Research Group, Department of Mathematics, Faculty of Science, King Abdulaziz University, P.O. Box 80203, Jeddah 21589, Saudi Arabia
Hassan Elahi: Department of Mechanical and Aerospace Engineering, Sapienza University of Rome, 00185 Rome, Italy
Usman Masud: Faculty of Electrical and Electronics Engineering, University of Engineering and Technology, Taxila 47050, Pakistan
Laveet Kumar: Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R & D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia
Jeyraj Selvaraj: Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R & D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia
Muhammad Shakeel Ahmad: Higher Institution Centre of Excellence (HICoE), UM Power Energy Dedicated Advanced Centre (UMPEDAC), Level 4, Wisma R & D, University of Malaya, Jalan Pantai Baharu, Kuala Lumpur 59990, Malaysia

Energies, 2021, vol. 14, issue 21, 1-11

Abstract: The availability of fresh drinkable water and water security is becoming a global challenge for sustainable development. In this regard, solar stills, due to their ease in operation, installation, and utilization of direct sunlight (as thermal energy), promise a better and sustainable future technology for water security in urban and remote areas. The major issue is its low distillate productivity, which limits its widespread commercialization. In this study, the effect of silicon (Si) particles is examined to improve the absorber surface temperature of the solar still absorber plate, which is the major component for increased distillate yield. Various weight percentages of Si particles were introduced in paint and coated on the aluminum absorber surface. Extensive indoor (using a self-made halogen light-based solar simulator) and outdoor testing were conducted to optimize the concentration. The coatings with 15 wt % Si in the paint exhibited the highest increase in temperature, namely, 98.5 °C under indoor controlled conditions at 1000 W/m 2 irradiation, which is 65.81% higher than a bare aluminum plate and 37.09% higher compared to a black paint-coated aluminum plate. On the other hand, coatings with 10 wt % Si reached up to 73.2 °C under uncontrolled outdoor conditions compared to 68.8 °C for the black paint-coated aluminum plate. A further increase in concentration did not improve the surface temperature, which was due to an excessive increase in thermal conductivity and high convective heat losses.

Keywords: water; solar still; absorber; silicon; temperature (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7140/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7140/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7140-:d:669748

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7140-:d:669748