EconPapers    
Economics at your fingertips  
 

Large Eddy Simulations on Film Cooling Flow Behaviors with Upstream Turbulent Boundary Layer Generated by Circular Cylinder

Young Seok Kang, Dong-Ho Rhee, Yu Jin Song and Jae Su Kwak
Additional contact information
Young Seok Kang: Aeropropulsion Research Division, Korea Aerospace Research Institute, Daejeon 34133, Korea
Dong-Ho Rhee: Aeropropulsion Research Division, Korea Aerospace Research Institute, Daejeon 34133, Korea
Yu Jin Song: School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang 10540, Korea
Jae Su Kwak: School of Aerospace and Mechanical Engineering, Korea Aerospace University, Goyang 10540, Korea

Energies, 2021, vol. 14, issue 21, 1-17

Abstract: Large eddy simulations on film cooling hole array on a flat plate was carried out to investigate upstream turbulence effect. Circular cylinders were configured to create a turbulent boundary layer and its diameter has been adjusted to generate 13% upstream turbulence intensity in the main flow. Due to the small pitch to diameter configuration of the cylinder, two-dimensional LES analysis was carried out in advance and the results showed that LES was an essential method to resolve flow field around and downstream circular cylinder, which was not available in RANS simulations. The three-dimensional LES results showed reasonable agreement in turbulence intensity and normalized velocity distributions along the vertical with measured data. According to the blowing ratio, the cooling flow coverage on the surface along the stream-wise direction was varied and well agreed with measured data. Additionally, upstream boundary flows were partially ingested inside the cooling hole and discharged again near along the centerline of the cooling hole. This accounted for film cooling effectiveness distribution inside the cooling hole surface and along the centerline. The current study revealed that the LES for predicting turbulent boundary layer behaviors due to upstream turbulence generation source was an effective and feasible method. Moreover, the LES effectively resolved flow fields such as film cooling flow behaviors and corresponding film cooling effectiveness distributions.

Keywords: film cooling hole; large eddy simulation; gas turbine; cooling turbine (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7227/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7227/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7227-:d:670843

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:21:p:7227-:d:670843