Numerical Studies of the Dynamics of the Roadheader Equipped with an Automatic Control System during Cutting of Rocks with Different Mechanical Properties
Piotr Cheluszka
Additional contact information
Piotr Cheluszka: Department of Mining Mechanization and Robotisation, Faculty of Mining, Safety Engineering and Industrial Automation, Silesian University of Technology, 44-100 Gliwice, Poland
Energies, 2021, vol. 14, issue 21, 1-29
Abstract:
The process of cutting rocks with a boom-type roadheader results in extreme dynamic loads and vibrations. Mining, especially in the case of hard rocks, is associated with large energy consumption, which, when combined with low process efficiency, can lead to low drilling performance. These phenomena are undesirable because excessive dynamic load leads to low machine durability, as well as deterioration of work conditions and safety. Low mining efficiency affects the economics of mining works conducted using roadheaders. However, these adverse effects can be minimized by optimizing the cutting process, thanks to the automatic control of the roadheader. The present article discusses the concept of automatic control of a boom-type roadheader’s cutting heads movement. Based on previously conducted computer investigations, it was assumed that reducing the energy consumption of the cutting process and improving the dynamic state of the roadheader (objective functions) are possible only by controlling three of the four parameters characterizing the cutting process: angular speed of the cutting heads, boom swinging speed, and cut height. The web of cut and workability of the rock can be treated as variables of a stochastic nature. This paper presents selected results of computer tests during simulated cutting of rocks with different uniaxial compressive strengths (UCS) in automatic and manual mode. In addition, the tests studied the behavior of the roadheader during the cutting of rocks with variable workability, which is typical of drilling excavations in a layered rock mass. The results of simulated cutting in automatic and manual mode were compared to assess the effectiveness of the adopted automatic control strategy. It was found that the algorithm developed for automatic control of the cutting heads’ movement allows reducing the consumption of cutting energy by up to half compared to the consumption during cutting in manual mode. Furthermore, it was found to improve the dynamic state of the machine.
Keywords: roadheader; mining rocks; automatic control; dynamics; mining energy consumption; simulation tests (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7353/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7353/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7353-:d:672527
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().