Analysing the Performance of Ammonia Powertrains in the Marine Environment
Thomas Buckley Imhoff,
Savvas Gkantonas and
Epaminondas Mastorakos
Additional contact information
Thomas Buckley Imhoff: Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
Savvas Gkantonas: Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
Epaminondas Mastorakos: Department of Engineering, University of Cambridge, Cambridge CB2 1PZ, UK
Energies, 2021, vol. 14, issue 21, 1-41
Abstract:
This study develops system-level models of ammonia-fuelled powertrains that reflect the characteristics of four oceangoing vessels to evaluate the efficacy of ammonia as an alternative fuel in the marine environment. Relying on thermodynamics, heat transfer, and chemical engineering, the models adequately capture the behaviour of internal combustion engines, gas turbines, fuel processing equipment, and exhaust aftertreatment components. The performance of each vessel is evaluated by comparing its maximum range and cargo capacity to a conventional vessel. Results indicate that per unit output power, ammonia-fuelled internal combustion engines are more efficient, require less catalytic material, and have lower auxiliary power requirements than ammonia gas turbines. Most merchant vessels are strong candidates for ammonia fuelling if the operators can overcome capacity losses between 4% and 9%, assuming that the updated vessels retain the same range as a conventional vessel. The study also establishes that naval vessels are less likely to adopt ammonia powertrains without significant redesigns. Ammonia as an alternative fuel in the marine sector is a compelling option if the detailed component design continues to show that the concept is practically feasible. The present data and models can help in such feasibility studies for a range of vessels and propulsion technologies.
Keywords: ammonia; marine propulsion; shipping; decarbonisation; powertrain (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/21/7447/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/21/7447/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:21:p:7447-:d:674702
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().