Improved Voltage Flux-Weakening Strategy of Permanent Magnet Synchronous Motor in High-Speed Operation
Hyun-Jae Lee and
Jin-Geun Shon
Additional contact information
Hyun-Jae Lee: Department of Electrical Engineering, Gachon University, Seongnam-Si 13120, Korea
Jin-Geun Shon: Department of Electrical Engineering, Gachon University, Seongnam-Si 13120, Korea
Energies, 2021, vol. 14, issue 22, 1-15
Abstract:
This paper presents an improved voltage flux-weakening strategy of a permanent magnet synchronous motor (PMSM) in a high-speed operation. The speed control performance using voltage flux-weakening control is not affected by the motor parameters, so it is used in various motors for high-speed operations. In general, the voltage flux-weakening control uses voltage references to generate a flux axis current reference. However, there may be errors between the voltage reference and the actual voltage flowing into the motor. This causes an error in the current reference generation and reduces the efficiency of the inverter and motor due to the use of more current. In this paper, the problems that can occur due to voltage errors were analyzed through theoretical approaches and simulations, and improved voltage flux-weakening control to resolve these problems was presented. This method’s advantage is that the error between the voltage reference and the voltage applied to the motor can be minimized, and the target speed can be reached with minimum current. As a result, it was possible to increase the energy efficiency by reducing the amount of current flowing through the motor. The effect of the improved voltage-based flux-weakening control method was verified through simulations and experiments. As a result, the voltage errors were reduced by approximately 2.16% compared to the general method. Moreover, the current used in the field-weakening control region was reduced by up to 27.17% under the same torque condition.
Keywords: flux-weakening control; high-speed operation; permanent magnet synchronous motor (PMSM); voltage closed-loop control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/22/7464/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/22/7464/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:22:p:7464-:d:675043
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().