Study on Optimum IUPAC Adsorption Isotherm Models Employing Sensitivity of Parameters for Rigorous Adsorption System Performance Evaluation
Md. Matiar Rahman,
Abu Zar Shafiullah,
Animesh Pal,
Md. Amirul Islam,
Israt Jahan and
Bidyut Baran Saha
Additional contact information
Md. Matiar Rahman: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Abu Zar Shafiullah: Department of Statistics, University of Dhaka, Dhaka 1000, Bangladesh
Animesh Pal: Department of Nuclear Engineering, University of Dhaka, Dhaka 1000, Bangladesh
Md. Amirul Islam: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Israt Jahan: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Bidyut Baran Saha: International Institute for Carbon-Neutral Energy Research (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
Energies, 2021, vol. 14, issue 22, 1-20
Abstract:
Adsorption cooling technologies driven by low-grade thermal or solar power are used as an energy-efficient alternative to conventional refrigeration and air conditioning systems. Explicit understanding of the adsorption cycles requires precise determination of the performance parameters, replication of the experimental data, and the rigorous study of the adsorption heat transformation method. Hence, the optimum adsorption isotherms model must be identified. Scientists often face difficulties in selecting the suitable isotherm model as there are many models for a particular form of adsorption isotherm. The present study introduces a novel approach for choosing the optimal models for each type of International Union of Pure and Applied Chemistry (IUPAC) classified adsorption isotherm using robust statistical methods. First, the box-and-whisker plots of error identification are employed. Tóth for Type-I(a) and Type-I(b), modified BET for Type-II, GAB for Type-III, Universal for Type-IV(a), and Type-IV(b), Sun Chakrabarty for Type-V, and Yahia et al. for Type-VI were found lower than the other candidate models in box-and-whisker plot. The optimality of our selected models was further verified using analysis of variance (ANOVA), pairwise Tukey honest significant difference (HSD) test, Kruskal–Wallis rank-sum test, and pairwise Wilcoxon rank-sum test. In short, rigorous statistical analysis was performed to identify the best model for each type of isotherm by minimizing error. Moreover, specific cooling effect (SCE) of Maxsorb III/ethanol and silica gel/water pairs were determined. Results showed that Tóth is the optimal isotherm model for the studied pairs, and the SCE values obtained from the model agree well with experimental data. The optimum isotherm model is indispensable for the precise designing of the next generation adsorption cooling cycles.
Keywords: ANOVA; IUPAC; optimum isotherm; statistical analysis; Tukey HSD (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/22/7478/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/22/7478/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:22:p:7478-:d:675332
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().