Rotor Position Synchronization in Central-Converter Multi-Motor Electric Actuation Systems
Cláudio de Andrade Lima,
James Cale and
Kamran Eftekhari Shahroudi
Additional contact information
Cláudio de Andrade Lima: Electrical and Computer Engineering Department, Colorado State University, 200 W Lake Street, Fort Collins, CO 80523, USA
James Cale: Electrical and Computer Engineering Department, Colorado State University, 200 W Lake Street, Fort Collins, CO 80523, USA
Kamran Eftekhari Shahroudi: Systems Engineering Department, Colorado State University, 200 W Lake Street, Fort Collins, CO 80523, USA
Energies, 2021, vol. 14, issue 22, 1-25
Abstract:
The aerospace industry is increasingly transitioning from hydraulic and pneumatic drives to power-electronic based drive systems for reduced weight and maintenance. Electromechanical thrust reverse actuation systems (EM-TRAS) are currently being considered as a replacement for mechanical based TRAS for future aircraft. An EM-TRAS consists of one or more power-electronic drives, electrical motors, and gear-trains that extend/retract mechanical members to produce a drag force that decelerates the aircraft upon landing. The use of a single (“central”) power electronic converter to simultaneously control a set of parallel induction machines is a potentially inexpensive and robust method for implementing EM-TRAS. However, because the electrical motors may experience different shaft torques—arising from differences in wind forces and a flexible nacelle—a method to implement rotor position synchronization in central-converter multi-motor (CCMM) architectures is needed. This paper introduces a novel method for achieving position synchronization within CCMM architecture by using closed-loop feedback of variable stator resistances in parallel induction machines. The feasibility of the method is demonstrated in several case studies using electromagnetic transient simulation on a set of parallel induction machines experiencing different load torque conditions, with the central converter implementing both voltage-based and current-based primary control strategies. The key result of the paper is that the CCMM architecture with proposed feedback control strategy is shown in these case studies to dynamically drive the position synchronization error to zero. The initial findings indicate that the CCMM architecture with induction motors may be a viable option for implementing EM-TRAS in future aircraft.
Keywords: induction machines; central converter; aerospace; volts-per-hertz; field-oriented control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/22/7485/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/22/7485/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:22:p:7485-:d:675489
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().