A Fast Response Robust Deadbeat Predictive Current Control for Permanent Magnet Synchronous Motor
Haowei Nie,
Jiaqiang Yang and
Rongfeng Deng
Additional contact information
Haowei Nie: College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Jiaqiang Yang: College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Rongfeng Deng: College of Electrical Engineering, Zhejiang University, Hangzhou 310027, China
Energies, 2021, vol. 14, issue 22, 1-16
Abstract:
Deadbeat predictive current control (DBPCC) has the characteristic of fast current response, but it is sensitive to motor parameters. Observer-based DBPCC can eliminate the steady state current tracking error when parameter mismatch exists. However, the actual current will deviate from the reference current during transient state in the case of inductance mismatch. In this paper, a fast response robust deadbeat predictive current control (FRRDBPCC) method is proposed for surface mounted permanent magnet synchronous motor (SPMSM). Firstly, the current tracking error caused by inductance mismatch during transient state is analyzed in detail. Then, an extended state observer (ESO) is proposed to estimate the lumped disturbance caused by parameter mismatch. Based on discrete time ESO, the predicted currents are used to replace the sampled currents to compensate for one-step delay caused by calculation and sampling. Furthermore, an online inductance identification algorithm and a modified prediction model are proposed. The dq-axis currents can be completely decoupled by updating the inductance in the modified prediction model online, ensuring that the current can track the reference value in two control periods. The proposed method improves robustness against parameter mismatch and guarantees dynamic response performance simultaneously. The experimental results verify the effectiveness of the proposed method.
Keywords: deadbeat predictive current control; transient response; surface mounted permanent magnet synchronous motor; extended state observer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/22/7563/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/22/7563/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:22:p:7563-:d:677762
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().