EconPapers    
Economics at your fingertips  
 

Numerical Model of Heat Pipes as an Optimization Method of Heat Exchangers

Łukasz Adrian, Szymon Szufa, Piotr Piersa and Filip Mikołajczyk
Additional contact information
Łukasz Adrian: Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
Szymon Szufa: Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
Piotr Piersa: Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland
Filip Mikołajczyk: Faculty of Process and Environmental Engineering, Lodz University of Technology, Wolczanska 213, 90-924 Lodz, Poland

Energies, 2021, vol. 14, issue 22, 1-38

Abstract: This paper presents research results on heat pipe numerical models as optimization of heat pipe heat exchangers for intensification of heat exchange processes and the creation of heat exchangers with high efficiency while reducing their dimensions. This work and results will allow for the extension of their application in passive and low-energy construction. New findings will provide a broader understanding of how heat pipes work and discover their potential to intensify heat transfer processes, heat recovery and the development of low-energy building engineering. The need to conduct research and analyses on the subject of this study is conditioned by the need to save primary energy in both construction engineering and industry. The need to save primary energy and reduce emissions of carbon dioxide and other pollutants has been imposed on the EU Member States through multiple directives and regulations. The presented numerical model of the heat pipe and the results of computer simulations are identical to the experimental results for all tested heat pipe geometries, the presented working factors and their best degrees of filling.

Keywords: heat pipe; heat transfer; heat exchanger; phase change; evaporation; condensation; low emission; numerical model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/22/7647/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/22/7647/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:22:p:7647-:d:679994

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7647-:d:679994