EconPapers    
Economics at your fingertips  
 

Concept Design of a High-Voltage Electrostatic Sanitizer to Prevent Spread of COVID-19 Coronavirus

Vahid Behjat, Afshin Rezaei-Zare, Issouf Fofana and Ali Naderian
Additional contact information
Vahid Behjat: Modelling and Diagnostic of Electrical Power Network Equipment Laboratory (MODELE), Department of Applied Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
Afshin Rezaei-Zare: Department of Electrical Engineering and Computer Science, York University, Toronto, ON M3J 1P3, Canada
Issouf Fofana: Modelling and Diagnostic of Electrical Power Network Equipment Laboratory (MODELE), Department of Applied Sciences, Université du Québec à Chicoutimi, Chicoutimi, QC G7H 2B1, Canada
Ali Naderian: High-Voltage Department, METSCO Energy Solution, Toronto, ON L4K 5W1, Canada

Energies, 2021, vol. 14, issue 22, 1-20

Abstract: In addition to public health measures, including social distancing, masking, cleaning, surface disinfection, etc., ventilation and air filtration can be a key component of a multi-pronged risk mitigation strategy against COVID-19 transmission indoors. Electrostatic precipitators (ESP) have already proved their high performance in fluid filtration, particularly in industrial applications, to control exhaust gas emissions and remove fine and superfine particles from the flowing gas, using high-voltage electrostatic fields and forces. In this contribution, a high-voltage electrostatic sanitizer (ESS), based on the electrostatic precipitation concept, is proposed as a supportive measure to reduce indoor air infection and prevent the spread of COVID-19 coronavirus. The finite element method (FEM) is used to model and simulate the proposed ESS, taking into account three main mechanisms involving in electrostatic sanitization, namely electrostatic field, airflow, and aerosol charging and tracing, which are mutually coupled to each other and occur simultaneously during the sanitization process. To consider the capability of the designed ESS in capturing superfine particles, functional parameters of the developed ESS, such as air velocity, electric potential, and space charge density, inside the ESS are investigated using the developed FEM model. Simulation results demonstrate the ability of the designed ESS in capturing aerosols containing coronavirus, precipitating suspended viral particles, and trapping them in oppositely charged electrode plates.

Keywords: electrostatic sanitizer; coronavirus; COVID-19; finite element modeling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/22/7808/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/22/7808/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:22:p:7808-:d:684825

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:22:p:7808-:d:684825