EconPapers    
Economics at your fingertips  
 

Overview of Thermal Hydraulic Optimization and Verification for the EU-DEMO HCPB BOP ICD Variant

Wolfgang Hering, Evaldas Bubelis, Sara Perez-Martin and Maria-Victoria Bologa
Additional contact information
Wolfgang Hering: Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Evaldas Bubelis: Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Sara Perez-Martin: Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany
Maria-Victoria Bologa: Karlsruhe Institute of Technology (KIT), Institute for Neutron Physics and Reactor Technology (INR), Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen, Germany

Energies, 2021, vol. 14, issue 23, 1-13

Abstract: When progressing from the International Thermonuclear Experimental Reactor (ITER) to the Demonstration Fusion Reactor (DEMO), a system for transferring plasma heat exhaust to a power conversion system is necessary for the so-called Balance of Plant (BOP). During the preconceptual phase of the EU-DEMO project, different BOP concepts were investigated in order to identify the main requirements and feasible architectures to achieve that goal in the most efficient way. This paper comprises the investigations performed during the DEMO preconceptual design phase (p-CDP) and compares the different variants. The main aspect was focused on the helium-cooled pebble bed (HCPB) breeding blanket (BB) concept. After all assessments were performed, the indirect coupled design (ICD) was chosen as the reference configuration for the DEMO HCPB BOP for further development and optimization. The ICD provides decoupling using a molten salt storage loop, which accumulates thermal power during plasma pulses that are released during dwell periods. The work is supported by simulations using design codes EBSILON and MATLAB/SIMULINK, providing the basis for the next design phase.

Keywords: EU-DEMO; helium-cooled pebble bed; balance of plant; thermal storage; indirect coupled design; energy balance; power conversion system; simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/23/7894/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/23/7894/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:23:p:7894-:d:687281

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:23:p:7894-:d:687281