Melting and Heat Transfer Characteristics of Urea Water Solution According to a Heating Module’s Operating Conditions in a Frozen Urea Tank
Byeong Gyu Jeong,
Kwang Chul Oh and
Seong Uk Jang
Additional contact information
Byeong Gyu Jeong: Korea Automotive Technology Institute, Cheonan-si 31214, Korea
Kwang Chul Oh: Korea Automotive Technology Institute, Cheonan-si 31214, Korea
Seong Uk Jang: Sejong e-R&D Center, 120, Yongin-si 16950, Korea
Energies, 2021, vol. 14, issue 23, 1-12
Abstract:
The urea-selective catalytic reduction (SCR) system, a nitrogen oxide reduction device for diesel vehicles, is a catalytic system that uses urea water solution (UWS) as a reducing agent. This system has a relatively wide range of operating temperatures. However, the freezing point of the reducing urea solution used in this system is −11 °C. When the ambient temperature dips below this freezing point in winter, the solution may freeze. Therefore, it is important to understand the melting characteristics of frozen UWS in relation to the operating conditions of the heating device to supply the minimum amount of aqueous solution required by the system in the initial stage of normal operation and startup of the urea–SCR system. In this study, we artificially froze a liquid solution by placing it along with a heating module in an acrylic chamber to simulate a urea solution tank. Two types of heating modules (P120 and P160) consisting of two heating elements and heat transfer bodies were used to melt the frozen solution. The melting characteristics of the frozen solution were observed, for example, changes in the temperature distribution around the heating module and the cross-sectional melting shape with the passage of time since the start of the power supply to the heating module. The shape of melting around the heating module differed depending on the level of UWS relative to the heater inside the urea tank. In case 1, it melted in a wide shape with an open top, and in case 2, it melted in a closed shape. This shape change was attributed to the formation of internal gaseous space due to volume reduction during melting and the heat transfer characteristics of the fluid and solid substances.
Keywords: urea-selective catalytic reduction (urea–SCR); urea water solution (UWS); heating module; PTC heater; urea melting; melting shape (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/23/8164/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/23/8164/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:23:p:8164-:d:695776
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().