Efficiency Advantages of the Separated Electric Compound Propulsion System for CNG Hybrid Vehicles
Emiliano Pipitone and
Salvatore Caltabellotta
Additional contact information
Emiliano Pipitone: Department of Engineering, University of Palermo, 90128 Palermo, Italy
Salvatore Caltabellotta: Department of Engineering, University of Palermo, 90128 Palermo, Italy
Energies, 2021, vol. 14, issue 24, 1-31
Abstract:
As is widely known, internal combustion engines are not able to complete the expansion process of the gas inside the cylinder, causing theoretical energy losses in the order of 20%. Several systems and methods have been proposed and implemented to recover the unexpanded gas energy, such as turbocharging, which partially exploits this energy to compress the fresh intake charge, or turbo-mechanical and turbo-electrical compounding, where the amount of unexpanded gas energy not used by the compressor is dedicated to propulsion or is transformed into electric energy. In all of these cases, however, maximum efficiency improvements between 4% and 9% have been achieved. In this work, the authors deal with an alternative propulsion system composed of a CNG-fueled spark ignition engine equipped with a turbine-generator specifically dedicated to unexpanded exhaust gas energy recovery and with a separated electrically driven turbocompressor. The system was conceived specifically for hybrid propulsion architectures, with the electric energy produced by the turbine generator being easily storable in the on-board energy storage system and re-usable for vehicle traction. The proposed separated electric turbo-compound system has not been studied in the scientific literature, nor have its benefits ever been analyzed. In this paper, the performances of the analyzed turbo-compound system are evaluated and compared with a traditional reference turbocharged engine from a hybrid application perspective. It is demonstrated that separated electric compounding has great potential, with promising overall efficiency advantages: fuel consumption reductions of up to 15% are estimated for the same power output level.
Keywords: hybrid vehicle; compound engine; CNG spark-ignition engine; exhaust energy recovery (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/24/8481/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/24/8481/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:24:p:8481-:d:703395
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().