Operation of the Prototype Device for Induction Heating of Railway Turnouts at Various Operating Frequencies
Robert Żelazny,
Paweł Jabłoński and
Tomasz Szczegielniak
Additional contact information
Robert Żelazny: Polish State Railways, Inc., Polish Railway Lines JSC, Railway Lines Plants, Nakielska 3, 42-600 Tarnowskie Góry, Poland
Paweł Jabłoński: Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland
Tomasz Szczegielniak: Department of Automation, Electrical Engineering and Optoelectronics, Faculty of Electrical Engineering, Czestochowa University of Technology, Armii Krajowej 17, 42-200 Czestochowa, Poland
Energies, 2021, vol. 14, issue 2, 1-16
Abstract:
Devices for electric heating of railroad turnouts are elements of the railway infrastructure protecting railroad turnouts against blocking them by snow and ice in winter. They often operate based on the principle of resistance heating but other solutions are also emerging. In this paper, one of such new solutions using the phenomenon of electromagnetic induction was presented and tested under various conditions. In comparison with traditional resistive heaters, the inductive ones offer heat distribution directly to ice and snow without intermediation of rails. Moreover, they can use a wide range spectrum of frequency to shorten the melting time. The resistive and inductive devices were tested with respect to melting time, temperatures and energy consumption. It follows that the induction-based device offers much lower energy consumption at a level of 30%–60% of that by resistive heater. The details depend on frequency used, initial temperature and number of induction devices of action assumed equivalent to the resistive one. Inductive heating of turnouts also offers shorter times of operation, which are obtained for frequencies in the range 40–70 kHz. The inductive device was also tested with respect to magnetic field levels around it to assess its possible influence on nearby infrastructure.
Keywords: electric heating of railway turnouts; induction heating of turnouts; safety of railway traffic (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/2/476/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/2/476/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:2:p:476-:d:482069
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().