A Comparative Analysis of Energy Consumption by Conventional and Anchor Based Dynamic Positioning of Ship
Andrzej Łebkowski and
Jakub Wnorowski
Additional contact information
Andrzej Łebkowski: Department of Ship Automation, Gdynia Maritime University, Poland Morska St. 83, 81-225 Gdynia, Poland
Jakub Wnorowski: Department of Ship Automation, Gdynia Maritime University, Poland Morska St. 83, 81-225 Gdynia, Poland
Energies, 2021, vol. 14, issue 3, 1-26
Abstract:
One of the requirements for ships equipped with dynamic positioning system is the ability to maintain a given position in various hydrometeorological conditions. At the same time, efforts at reducing electricity consumption are made in order to reduce operating costs and emissions of exhaust gases, such as sulfur oxides and greenhouse gases such as carbon dioxide (CO 2 ). For this purpose, the ship designer at the design stage must predict both how much energy the ship will theoretically use during operation and how the expenditure can be reduced. The publication presents a comparison of energy consumption with two different approaches to ship positioning: the use of classic dynamic positioning utilizing a set of thrusters and by using a set of anchors. In order to determine the energy consumption during positioning, the matrix method was used, on the basis of which the analysis of the ability to hold the position of the ship (capability plot) was performed, in accordance with the recommendations of the classification society DNV GL. Thanks to this analysis, it was possible to find such a distribution of thrust vectors on propulsors that the ship would not lose its set position under the hydrometeorological conditions specified in the analysis. As a result of comparing the two positioning systems, it turned out that using anchor-based positioning uses 24% less energy than positioning based on a set of thrusters, which translates into 24% less CO 2 emissions into the atmosphere.
Keywords: anchor positioning systems; dynamic positioning system; ship electric propulsion energy consumption; energy efficiency (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/3/524/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/3/524/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:3:p:524-:d:483507
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().