A New Modeling Framework for Multi-Scale Simulation of Hydraulic Fracturing and Production from Unconventional Reservoirs
J. T. Birkholzer,
J. Morris,
J. R. Bargar,
F. Brondolo,
A. Cihan,
D. Crandall,
H. Deng,
W. Fan,
W. Fu,
P. Fu,
A. Hakala,
Y. Hao,
J. Huang,
A. D. Jew,
T. Kneafsey,
Z. Li,
C. Lopano,
J. Moore,
G. Moridis,
S. Nakagawa,
V. Noël,
M. Reagan,
C. S. Sherman,
R. Settgast,
C. Steefel,
M. Voltolini,
W. Xiong and
J. Ciezobka
Additional contact information
J. T. Birkholzer: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
J. Morris: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
J. R. Bargar: SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
F. Brondolo: SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
A. Cihan: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
D. Crandall: National Energy Technology Laboratory, Morgantown, WV 26507, USA
H. Deng: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
W. Fan: SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
W. Fu: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
P. Fu: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
A. Hakala: National Energy Technology Laboratory, Pittsburgh, PA 10940, USA
Y. Hao: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
J. Huang: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
A. D. Jew: SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
T. Kneafsey: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
Z. Li: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
C. Lopano: National Energy Technology Laboratory, Pittsburgh, PA 10940, USA
J. Moore: National Energy Technology Laboratory, Morgantown, WV 26507, USA
G. Moridis: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
S. Nakagawa: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
V. Noël: SLAC National Accelerator Laboratory, Menlo Park, CA 94025, USA
M. Reagan: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
C. S. Sherman: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
R. Settgast: Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
C. Steefel: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
M. Voltolini: Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
W. Xiong: National Energy Technology Laboratory, Pittsburgh, PA 10940, USA
J. Ciezobka: Gas Technologies Institute (GTI), Des Plaines, IL 60018, USA
Energies, 2021, vol. 14, issue 3, 1-25
Abstract:
This paper describes a new modeling framework for microscopic to reservoir-scale simulations of hydraulic fracturing and production. The approach builds upon a fusion of two existing high-performance simulators for reservoir-scale behavior: the GEOS code for hydromechanical evolution during stimulation and the TOUGH+ code for multi-phase flow during production. The reservoir-scale simulations are informed by experimental and modeling studies at the laboratory scale to incorporate important micro-scale mechanical processes and chemical reactions occurring within the fractures, the shale matrix, and at the fracture-fluid interfaces. These processes include, among others, changes in stimulated fracture permeability as a result of proppant behavior rearrangement or embedment, or mineral scale precipitation within pores and microfractures, at µm to cm scales. In our new modeling framework, such micro-scale testing and modeling provides upscaled hydromechanical parameters for the reservoir scale models. We are currently testing the new modeling framework using field data and core samples from the Hydraulic Fracturing Field Test (HFTS), a recent field-based joint research experiment with intense monitoring of hydraulic fracturing and shale production in the Wolfcamp Formation in the Permian Basin (USA). Below, we present our approach coupling the reservoir simulators GEOS and TOUGH+ informed by upscaled parameters from micro-scale experiments and modeling. We provide a brief overview of the HFTS and the available field data, and then discuss the ongoing application of our new workflow to the HFTS data set.
Keywords: hydraulic fracturing; multi-scale; simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/3/641/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/3/641/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:3:p:641-:d:487874
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().