Emission Characteristics for Swirl Methane–Air Premixed Flames with Ammonia Addition
Joanna Jójka and
Rafał Ślefarski
Additional contact information
Joanna Jójka: Institute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, Poland
Rafał Ślefarski: Institute of Thermal Engineering, Poznan University of Technology, 60-965 Poznan, Poland
Energies, 2021, vol. 14, issue 3, 1-19
Abstract:
This paper details the experimental and numerical analysis of a combustion process for atmospheric swirl burners using methane with added ammonia as fuel. The research was carried out for lean methane–air mixtures, which were doped with ammonia up to 5% and preheated up to 473 K. A flow with internal recirculation was induced by burners with different outflow angles from swirling blades, 30° and 50°, where tested equivalence ratio was 0.71. The NO and CO distribution profiles on specified axial positions of the combustor and the overall emission levels at the combustor outlet were measured and compared to a modelled outcome. The highest values of the NO emissions were collected for 5% NH 3 and 50° (1950 ppmv), while a reduction to 1585 ppmv was observed at 30°. The doubling of the firing rates from 15 kW up to 30 kW did not have any great influence on the overall emissions. The emission trend lines were not proportional to the raising share of the ammonia in the fuel. 3D numerical tests and a kinetic study with a reactor network showed that the NO outlet concentration for swirl flame depended on the recirculation ratio, residence time, wall temperature, and the mechanism used. Those parameters need to be carefully defined in order to get highly accurate NO predictions—both for 3D simulations and simplified reactor-based models.
Keywords: swirl flames; ammonia; NO emission modelling; reactor network; CH 4 /NH 3 flame; NH 3 combustion process (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/3/662/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/3/662/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:3:p:662-:d:488630
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().