Towards Modeling Partial Discharge Phenomena and Propagation in Power Networks Using the Transmission-Line Matrix Method
Antonella Ragusa,
Hugh Sasse and
Alistair Duffy
Additional contact information
Antonella Ragusa: Faculty of Technology, De Montfort University, Leicester LE1 9BH, UK
Hugh Sasse: Faculty of Technology, De Montfort University, Leicester LE1 9BH, UK
Alistair Duffy: Faculty of Technology, De Montfort University, Leicester LE1 9BH, UK
Energies, 2021, vol. 14, issue 3, 1-17
Abstract:
Partial discharge (PD), where high field strengths on power cables cause charge build up and discharge within a dielectric at sites of imperfections or inhomogeneities, can lead to noise issues and potential failure of the dielectric. This paper presents the first stage of a research activity that aims to develop a transmission-line matrix (TLM)-based simulation “workbench” useful to investigate PD events in a transmission line. The proposed approach allows the predicting of the electromagnetic disturbances generated by the PD event, and the analysis of external field coupling, such as from intentional electromagnetic interference or lightning, which can add to the field stresses. The paper is focused on defining the right modeling method to simulate PD phenomena in a transmission line context. The best approach to integrate the PD model with the model of the transmission line, useful to describe the propagation of the conducted and radiated emissions produced by PD, is analyzed. A first workbench is proposed, and the first simulation results are described. The paper concludes with the topics of further research.
Keywords: partial discharge; power cables; electromagnetic interference; transmission line matrix modeling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/3/689/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/3/689/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:3:p:689-:d:489172
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().