EconPapers    
Economics at your fingertips  
 

Crashed Electric Vehicle Handling and Recommendations—State of the Art in Germany

Katharina Wöhrl, Christian Geisbauer, Christoph Nebl, Susanne Lott and Hans-Georg Schweiger
Additional contact information
Katharina Wöhrl: Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Esplanade 10, D-85049 Ingolstadt, Germany
Christian Geisbauer: Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Esplanade 10, D-85049 Ingolstadt, Germany
Christoph Nebl: Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Esplanade 10, D-85049 Ingolstadt, Germany
Susanne Lott: Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Esplanade 10, D-85049 Ingolstadt, Germany
Hans-Georg Schweiger: Technische Hochschule Ingolstadt, CARISSMA Institute of Electric, Connected and Secure Mobility (C-ECOS), Esplanade 10, D-85049 Ingolstadt, Germany

Energies, 2021, vol. 14, issue 4, 1-21

Abstract: In the near future, electric powered vehicles will represent a major part of the road traffic. Accordingly, there will be a natural increase of accidents involving electric vehicles. There are not many cases of such accidents yet and therefore the experience and correct handling are still partially open points for the involved parties, such as the rescue services for example. The aim of this work is to provide a complete overview of the accident handling sequence in Germany, starting with the damaged vehicle on site and moving on to the risks and challenges for the stakeholders, such as transport and recycling companies. Arising from the developed overview, a handling recommendation for yet undiscussed points is given. Especially, different extinguishing and deactivation methods are compared and discussed. Due to a lack of a common live-feed from battery data on site, other criteria have to be taken into account to assess the state of the battery. The wrecked vehicle—including the high voltage system—needs to be in a definite safe state at the handover to a towing service. Depending on the case, different options for securing the vehicle will be considered in this work.

Keywords: electric vehicle; battery; high voltage; accident; recommendation; energy storage; thermal runaway; fire extinguishing; rescue service; handling (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/4/1040/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/4/1040/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:4:p:1040-:d:500354

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1040-:d:500354