EconPapers    
Economics at your fingertips  
 

Controlled Salinity-Biosurfactant Enhanced Oil Recovery at Ambient and Reservoir Temperatures—An Experimental Study

Tinuola Udoh and Jan Vinogradov
Additional contact information
Tinuola Udoh: Department of Chemical/Petrochemical Engineering, Akwa Ibom State University, Ikot Akpaden 520001, Nigeria
Jan Vinogradov: School of Engineering, University of Aberdeen, Aberdeen AB24 3UE, UK

Energies, 2021, vol. 14, issue 4, 1-16

Abstract: In this paper, a thorough experimental investigation of enhanced oil recovery via controlled salinity-biosurfactant injection under typical reservoir temperature conditions is reported for the first time. Sixteen core flooding experiments were carried out with four displacing fluids in carbonate rock samples and the improved oil recovery was investigated in secondary, tertiary and quaternary injection modes. The temperature effect on oil recovery during floodings was compared at two temperatures (23 °C and 70 °C) on similar rock samples and fluids using two types of biosurfactants: GreenZyme ® and rhamnolipids. The results of this study show that injection of controlled salinity brine (CSB) and controlled salinity biosurfactant brine (CSBSB) improve oil recovery relative to injection of high salinity formation brine (FMB) at both high and low temperatures. At 23 °C, CSBSB improved oil recovery by 15–17% OIIP compared with conventional FMB injection, and by 4–8% OIIP compared with CSB injection. At 70 °C, the injection of CSBSB increased oil recovery by 10–13% OIIP compared with injection of FMB, and by 2–6% OIIP compared with CSB injection. Furthermore, increase in the system temperature generally resulted in increased oil recovery, irrespective of the type of the injection brine. The results of this study have demonstrated for the first time the enhanced oil recovery potential of combined controlled salinity brine and biosurfactant applications at temperature relevant to hydrocarbon reservoirs. The results of this study are significant for the design of controlled salinity and biosurfactant flooding in carbonate reservoirs.

Keywords: controlled salinity waterflooding; controlled salinity-biosurfactant EOR; EOR; reservoir conditions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/4/1077/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/4/1077/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:4:p:1077-:d:501519

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:1077-:d:501519