Analysis of Technical Capabilities, Methodology and Test Results of a Light-Commercial Vehicle Conversion to Battery Electric Powertrain
Piotr Bielaczyc,
Rafal Sala and
Tomasz Meinicke
Additional contact information
Piotr Bielaczyc: BOSMAL Automotive Research & Development Institute Ltd., 43-300 Bielsko-Biala, Poland
Rafal Sala: BOSMAL Automotive Research & Development Institute Ltd., 43-300 Bielsko-Biala, Poland
Tomasz Meinicke: BOSMAL Automotive Research & Development Institute Ltd., 43-300 Bielsko-Biala, Poland
Energies, 2021, vol. 14, issue 4, 1-18
Abstract:
This paper describes a holistic development and testing approach for a battery electric vehicle (BEV) prototype based on a self-supporting body platform originating from a vehicle powered by an internal combustion engine. The topic was investigated in relation to the question of whether conversion of existing vehicle platforms is a viable approach in comparison to designing a new vehicle ab initio. The scope of work consisted of the development stage, followed by laboratory and on-road testing to verify the vehicle’s performance and driveability. The vehicle functionality targeted commercial daily use on urban routes. Based on the assumed technical requirements, the vehicle architecture was designed and components specified that included various sub-systems: electric motor powertrain, electronic control unit (ECU), high-voltage battery pack with battery management system (BMS), charging system, high and low voltage wiring harness and electrically driven auxiliary systems. Electric sub-systems were integrated into the existing vehicle on-board controller area network (CAN) bus by means of enhanced algorithms. The test methodology of the prototype electric vehicle included the vehicle range and energy consumption measurement using the EU legislative test cycle. Laboratory testing was performed at different ambient temperatures and for various characteristics of the kinetic energy recovery system. Functional and driveability testing was performed on the road, also including an assessment of overall vehicle durability. Based on the results of testing, it was determined that the final design adopted fulfilled the pre-defined criteria; benchmarking against competing solutions revealed favorable ratings in certain aspects.
Keywords: electric vehicle; battery electric; induction charging; regenerative braking (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/4/1119/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/4/1119/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:4:p:1119-:d:502617
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().