EconPapers    
Economics at your fingertips  
 

Dynamic Performance of Planetary Gear Joint for Satellite Antenna Driving Mechanism Considering Multi-Clearance Coupling

Jianchao Han, Lei Liang and Yang Zhao
Additional contact information
Jianchao Han: Department of Astronautics Engineering, Harbin Institute of Technology, Harbin 150001, China
Lei Liang: Department of Astronautics Engineering, Harbin Institute of Technology, Harbin 150001, China
Yang Zhao: Department of Astronautics Engineering, Harbin Institute of Technology, Harbin 150001, China

Energies, 2021, vol. 14, issue 4, 1-25

Abstract: Dynamic pointing and tracking accuracy are the most relevant indicators of dynamic performance for the satellite antenna driving mechanism. Multi-clearance coupling in the joints will incur high-frequency vibration and dynamic errors of the system. Joints of existing analytical models are generally oversimplified as planar revolute hinges, which ignore the coupling effect of multi-clearance. It cannot proficiently predict the dynamic behavior of the driving mechanism with multi-clearance on the orbit. To address this problem, a typical 2K-H planetary gear joint model with multi-clearance coupling has been developed by considering radial clearance, backlash, tooth profile error, time-varying meshing stiffness, and damping. A dynamic model of a typical dual-axis driving mechanism is established to analyze the dynamic characteristics of multibody systems with planetary gear joints. The effects of rotational speed, radial clearance, backlash, and their coupling on the dynamic performance of the dual-axis driving mechanism under different driving modes are explored by numerical simulations. The results show that the coupling of radial clearance and backlash in joints have a significant influence on the dynamic performance of the system. Appropriate clearance design avails the dynamic pointing accuracy and tracking accuracy of the dual-axis driving mechanism.

Keywords: multi-clearance coupling; planetary gear joint; dynamic performance; multibody dynamics (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/4/815/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/4/815/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:4:p:815-:d:492993

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:815-:d:492993