Enhanced Contingency Analysis—A Power System Operator Tool
Hrvoje Bulat,
Dubravko Franković and
Saša Vlahinić
Additional contact information
Hrvoje Bulat: Croatian Transmission System Operator Ltd., Transmission area Zagreb, 10000 Zagreb, Croatia
Dubravko Franković: Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia
Saša Vlahinić: Faculty of Engineering, University of Rijeka, 51000 Rijeka, Croatia
Energies, 2021, vol. 14, issue 4, 1-21
Abstract:
Contingency analysis (CA) is a well-known function in power system planning and operation. In accordance with CA results, the system operator dispenses information regarding static security of the power system (overloads and/or voltage outside tolerable limits). However, classic CA with remedial action schemes cannot distinguish safe operating regimes from potentially dangerous ones in terms of voltage (in)stability. In fact, voltage instability is considered as one of the major threats leading to power system insecurity. Therefore, in this study an enhanced contingency analysis (ECA) is presented where the classical CA is extended with static voltage analysis based on the modal analysis. The article presents a dedicated methodology for the proposed ECA tool, with special emphasis on the analysis of corrective measures provided by the system operator, intended for enhancing power system security (regulation transformer action, distributed generation and energy storage). Also the influence of the load model was analyzed by simulation and the main conclusions are presented. The study demonstrated the advantages that distributed generation resources and energy storage can provide in the context of voltage stability. Also, the simulations acknowledged the importance of correct load modeling, since over or under estimation of a certain load-type component can result in too optimistic or too pessimistic power system operation limits.
Keywords: contingency analysis; voltage stability; modal analysis; distributed generation; energy storage; electric load model (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/4/923/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/4/923/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:4:p:923-:d:496834
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().