EconPapers    
Economics at your fingertips  
 

Mathematical Formulation and Analytic Solutions for Uncertainty Analysis in Probabilistic Safety Assessment of Nuclear Power Plants

Gyun Seob Song and Man Cheol Kim
Additional contact information
Gyun Seob Song: Department of Energy Systems Engineering, Chung-Ang University, 84 Heukseok-ro Dongjak-gu, Seoul 06974, Korea
Man Cheol Kim: Department of Energy Systems Engineering, Chung-Ang University, 84 Heukseok-ro Dongjak-gu, Seoul 06974, Korea

Energies, 2021, vol. 14, issue 4, 1-15

Abstract: Monte Carlo simulations are widely used for uncertainty analysis in the probabilistic safety assessment of nuclear power plants. Despite many advantages, such as its general applicability, a Monte Carlo simulation has inherent limitations as a simulation-based approach. This study provides a mathematical formulation and analytic solutions for the uncertainty analysis in a probabilistic safety assessment (PSA). Starting from the definitions of variables, mathematical equations are derived for synthesizing probability density functions for logical AND, logical OR, and logical OR with rare event approximation of two independent events. The equations can be applied consecutively when there exist more than two events. For fail-to-run failures, the probability density function for the unavailability has the same probability distribution as the probability density function (PDF) for the failure rate under specified conditions. The effectiveness of the analytic solutions is demonstrated by applying them to an example system. The resultant probability density functions are in good agreement with the Monte Carlo simulation results, which are in fact approximations for those from the analytic solutions, with errors less than 12.6%. Important theoretical aspects are examined with the analytic solutions such as the validity of the use of a right-unbounded distribution to describe the uncertainty in the unavailability/probability. The analytic solutions for uncertainty analysis can serve as a basis for all other methods, providing deeper insights into uncertainty analyses in probabilistic safety assessment.

Keywords: probabilistic safety assessment; fault tree analysis; uncertainty analysis; analytic solutions; Monte Carlo simulation (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/4/929/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/4/929/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:4:p:929-:d:497032

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:929-:d:497032