EconPapers    
Economics at your fingertips  
 

The Role of National Energy Policies and Life Cycle Emissions of PV Systems in Reducing Global Net Emissions of Greenhouse Gases

Gabriel Constantino de Lima, Andre Luiz Lopes Toledo and Leonidas Bourikas
Additional contact information
Gabriel Constantino de Lima: Federal Institute of Education, Science and Technology (IFRN), Natal 59015-000, Brazil
Andre Luiz Lopes Toledo: Federal Institute of Education, Science and Technology (IFRN), Natal 59015-000, Brazil
Leonidas Bourikas: School of Architecture, Imagination Lancaster, LICA, Lancaster University, Lancaster LA1 4YW, UK

Energies, 2021, vol. 14, issue 4, 1-19

Abstract: The energy sector and electricity generation in particular, is responsible for a great share of the global greenhouse gas (GHG) emissions. World electricity generation is still largely based on the burning of fossil fuels. However, Brazil has already a very low electricity carbon intensity due to the country’s large hydropower capacity. In countries with low grid carbon intensities such as Brazil, the investment in photovoltaic solar systems (PVSS) even if it is cost-effective, might become challenging as any new generation competes essentially against other renewable generation and the carbon offset is not a key driver for investment anymore. This study builds further upon that case to examine if national renewable energy incentives could actually lead to an increase of global net carbon emissions from the installation of PVSS in countries with a low grid carbon intensity. The study presents a life cycle analysis (LCA) of ten photovoltaic systems representative of the different operational conditions in regions across Brazil. It was found that the average energy payback time of the studied PV plants is between 3 and 5 years of operation. This result shows the feasibility and viability of such investments in the Brazilian context. When the LCA was integrated into the analysis though, the results showed that the “local” direct emissions avoidance from two out of ten studied PV plants would not manage to offset their “global” life cycle emissions due to the 2020 projected Brazilian grid emission factor which is already low. It is important to recognize that public policies of unrestricted, unconditional stimulus to photovoltaic systems investment might not help towards reducing global net emissions when the PV systems are installed at countries with a low carbon emission electric matrix. That is also something to consider for other countries as the carbon intensity of their grids will start reducing at levels similar to Brazil’s. It is likely that in the near future, the real net carbon offset achieved by PV systems at the global level will be largely defined by the manufacture procedures and the production’s carbon intensity at the country of origin of the PV panels.

Keywords: life cycle assessment (LCA); renewable energy; photovoltaics; greenhouse gas emission rate (GHGe-rate); embodied carbon; net-zero emissions (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/4/961/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/4/961/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:4:p:961-:d:497975

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:4:p:961-:d:497975