Research on a Comprehensive Maintenance Optimization Strategy for an Offshore Wind Farm
Yang Lu,
Liping Sun and
Yanzhuo Xue
Additional contact information
Yang Lu: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Liping Sun: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Yanzhuo Xue: College of Shipbuilding Engineering, Harbin Engineering University, Harbin 150001, China
Energies, 2021, vol. 14, issue 4, 1-22
Abstract:
Offshore wind is considered a crucial part in the future energy supply. However, influenced by weather conditions, the maintenance of offshore wind turbine system (OWTs) equipment is challenged by poor accessibility and serious failure consequences. It is necessary to study the optimized strategy of comprehensive maintenance for offshore wind farms, with consideration of the influences of incomplete equipment maintenance, weather accessibility and economic relevance. In this paper, a Monte Carlo algorithm-improved factor is presented to simulate the imperfect preventive maintenance activity, and waiting windows were created to study the accessibility of weather conditions. Based on a rolling horizon approach, an opportunity group maintenance model of an offshore wind farm was proposed. The maintenance correlations between systems and between equipment as well as breakdown losses, maintenance uncertainty, and weather conditions were taken into account in the model, thus realizing coordination of maintenance activities of different systems and different equipment. The proposed model was applied to calculate the maintenance cost of the Dafengtian Offshore Wind Farm in China. Results proved that the proposed model could realize long-term dynamic optimization of offshore wind farm maintenance activities, increase the total availability of the wind power system and reduce total maintenance costs.
Keywords: offshore wind farm; weather availability; imperfect maintenance; opportunistic maintenance; rolling horizon approach (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/4/965/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/4/965/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:4:p:965-:d:498013
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().