EconPapers    
Economics at your fingertips  
 

Thermally Conductive Backsheets (TCB) of PV Modules: Positive Impacts on Performance, Lifetime and LCOE

Ashwini Pavgi, Jaewon Oh and GovindaSamy TamizhMani
Additional contact information
Ashwini Pavgi: Photovoltaic Reliability Laboratory, Arizona State University, Mesa, AZ 85212, USA
Jaewon Oh: Photovoltaic Reliability Laboratory, Arizona State University, Mesa, AZ 85212, USA
GovindaSamy TamizhMani: Photovoltaic Reliability Laboratory, Arizona State University, Mesa, AZ 85212, USA

Energies, 2021, vol. 14, issue 5, 1-14

Abstract: The operating temperatures of photovoltaic (PV) modules can be impacted by the selection of specific packaging materials, e.g., backsheets and encapsulants. This research focuses on the evaluation of operating temperature reduction of one-cell modules by comparing conventional Tedlar/polyester/Tedlar (TPT) backsheet with novel thermally conductive backsheets (TCBs) materials. A large number of one-cell modules with two TCB types (TCB_A and TCB_B) and baseline TPT type were fabricated and installed in three different climatic conditions of the hot-dry desert in Arizona (high and low wind speed locations) and North Carolina (temperate with low wind speed location). In this study, these two TCBs were compared with conventional TPT backsheet in terms of performance, lifetime and levelized cost of energy (LCOE). The field results were analyzed for thermal performance of TCBs compared to TPT at three sites for two and half years. This study concludes that the thermal and electrical performances of the PV modules can be improved by using TCB_A in hot and dry climate sites and TCB_B at temperate climate sites. Therefore, the lifetime of TCB-based modules is expected to be higher than TPT-based modules. Using backsheet-specific power degradation levels and assuming the same cost for both types of backsheets, the LCOE of modules using TCBs is estimated to be lower than that of TPT.

Keywords: thermally conductive backsheets; acceleration factor; service lifetime; LCOE; PV modules (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/5/1252/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/5/1252/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:5:p:1252-:d:505562

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:5:p:1252-:d:505562