Selection of Parameters for Accumulating Layer of Solar Walls with Transparent Insulation
Jadwiga Świrska-Perkowska and
Zbigniew Perkowski
Additional contact information
Jadwiga Świrska-Perkowska: Department of Physics of Materials, Faculty of Civil Engineering and Architecture, Opole University of Technology, Katowicka 48, 45-061 Opole, Poland
Zbigniew Perkowski: Department of Physics of Materials, Faculty of Civil Engineering and Architecture, Opole University of Technology, Katowicka 48, 45-061 Opole, Poland
Energies, 2021, vol. 14, issue 5, 1-55
Abstract:
One of the strategies to improve the energy performance of buildings may be the use of passive solar systems with transparent insulation. In the article, a numerical model of solar wall (SW) with transparent insulation (TI) obtained using the method of elementary balances is presented. On this basis, numerical simulations of the behavior of SW with a transparent honeycomb insulation made of modified cellulose acetate were performed for 4 different climatic conditions in Europe (Stockholm, Warsaw, Paris, and Rome). For each location, the calculations were carried out for three different TI thickness values (48, 88, and 128 mm), for thermal diffusivity of the accumulating layer (AL) ranging from 4.32 × 10 −7 to 8.43 × 10 −7 m 2 /s, and for its thickness ranging from 0.1 to 0.5 m. The purpose of simulations was to select the appropriate material and thickness of AL and TI for the climatic conditions. The following solutions proved to be the most favorable: Stockholm: TI—thk. 128 mm, AL—sand-lime blocks, thk. 25 cm; Warsaw: TI—thk. 128 mm, AL—sand-lime blocks, thk. 27 cm; Paris: TI—thk. 88 mm, AL—solid ceramic brick, thk. 27 cm; Rome: TI—thk. 48 mm, AL—solid ceramic brick, thk. 29 cm.
Keywords: transparent insulation; solar wall; accumulating layer; energy efficiency; European climate (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/5/1283/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/5/1283/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:5:p:1283-:d:506343
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().