Fault Detection and Diagnosis Methods for Fluid Power Pitch System Components—A Review
Magnus F. Asmussen,
Jesper Liniger and
Henrik C. Pedersen
Additional contact information
Magnus F. Asmussen: Hydratech Industries, 9000 Silkeborg, Denmark
Jesper Liniger: Department of Energy Technology, Aalborg University, 6700 Esbjerg, Denmark
Henrik C. Pedersen: Department of Energy Technology, Aalborg University, 9220 Aalborg East, Denmark
Energies, 2021, vol. 14, issue 5, 1-15
Abstract:
Wind turbines have become a significant part of the global power production and are still increasing in capacity. Pitch systems are an important part of modern wind turbines where they are used to apply aerodynamic braking for power regulation and emergency shutdowns. Studies have shown that the pitch system is responsible for up to 20% of the total down time of a wind turbine. Reducing the down time is an important factor for decreasing the total cost of energy of wind energy in order to make wind energy more competitive. Due to this, attention has come to condition monitoring and fault detection of such systems as an attempt to increase the reliability and availability, hereby the reducing the turbine downtime. Some methods for fault detection and condition monitoring of fluid power systems do exists, though not many are used in today’s pitch systems. This paper gives an overview of fault detection and condition monitoring methods of fluid power systems similar to fluid power pitch systems in wind turbines and discuss their applicability in relation to pitch systems. The purpose is to give an overview of which methods that exist and to find areas where new methods need to be developed or existing need to be modified. The paper goes through the most important components of a pitch system and discuss the existing methods related to each type of component. Furthermore, it is considered if existing methods can be used for fluid power pitch systems for wind turbine.
Keywords: fluid power; wind turbines; condition monitoring; fault detection (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations:
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/5/1305/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/5/1305/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:5:p:1305-:d:507480
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().