Influence of Short Carbon-Chain Alcohol (Ethanol and 1-Propanol)/Diesel Fuel Blends over Diesel Engine Emissions
María D. Redel-Macías,
David E. Leiva-Candia,
José A. Soriano,
José M. Herreros,
Antonio J. Cubero-Atienza and
Sara Pinzi
Additional contact information
María D. Redel-Macías: Department of Rural Engineering, Ed Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14071 Córdoba, Spain
David E. Leiva-Candia: Department of Physical Chemistry and Applied Thermodynamics, Ed Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14071 Córdoba, Spain
José A. Soriano: Escuela de Ingeniería Industrial de Toledo, Campus de Excelencia Internacional en Energía y Medioambiente, Universidad de Castilla-La Mancha, Real Fábrica de Armas. Edif. Sabatini. Av. Carlos III, s/n, 45071 Toledo, Spain
José M. Herreros: Department of Mechanical Engineering, School of Engineering, University of Birmingham, Birmingham B15 2TT, UK
Antonio J. Cubero-Atienza: Department of Rural Engineering, Ed Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14071 Córdoba, Spain
Sara Pinzi: Department of Physical Chemistry and Applied Thermodynamics, Ed Leonardo da Vinci, Campus de Rabanales, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario, ceiA3, 14071 Córdoba, Spain
Energies, 2021, vol. 14, issue 5, 1-17
Abstract:
Oxygenated fuels, in this case short carbon-chain alcohols, have been investigated as alternative fuels to power compression ignition engines. A major advantage of short-chain alcohols is that they can be produced from renewable resources, i.e., cultivated commodities or biomass-based biorefineries. However, before entering the market, the effects of short-chain alcohols on engine performance, exhaust emissions, noise and sound quality need to be understood. This work sheds light on the relationship between the physicochemical properties of the alcohol/diesel fuel blends (ethanol and 1-propanol) on engine performance, exhaust emissions and, for the first time, on noise and sound quality. It has been demonstrated that when the content of alcohol in blends increased, soot and soluble organic material emissions drastically decreased, mainly due to the increase of oxygen content in the fuel. Reduction in soot emissions combined with higher thermodynamic efficiency of alcohol fuels, with respect to diesel fuel, enable their utilization on compression ignition engines. There is also an improvement in the soot-NO x trade off, leading to large reductions on soot with a small effect on NO x emissions. The oxygen content within the fuel reduces CO and THC emissions at extra-urban driving operation conditions. However, hydrocarbons and CO emissions increased at urban driving conditions, due to the high heat of vaporization of the alcohol fuels which reduces cylinder temperature worsening fuel atomization, vaporization and mixing with air being more significant at lower cylinder temperature conditions (low engine loads and speeds). Similarly, the higher the presence of alcohol in the blend, the higher the noise emitted by the engine due to their low tendency to auto-ignition. The optimization of alcohol quantity and the calibration of engine control parameters (e.g., injection settings) which is out of the scope of this work, will be required to overcome noise emission penalty. Furthermore, under similar alcohol content in the blend (10% v / v ), the use of propanol is preferred over ethanol, as it exhibits lower exhaust emissions and better sound quality than ethanol.
Keywords: alcohol blends; ethanol; emissions; soot; combustion noise (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/5/1309/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/5/1309/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:5:p:1309-:d:507463
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().