Analysis and Simulation of an Absorption Cooling System Using a Latent Heat Storage Tank and a Tempering Valve
Jesús Cerezo,
Fernando Lara,
Rosenberg J. Romero and
Antonio Rodríguez
Additional contact information
Jesús Cerezo: Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
Fernando Lara: Facultad de Ingeniería, Universidad Autónoma de Baja California, Blvd. Benito Juárez y Calle de la Normal s/n, Insurgentes Este, Mexicali 21280, Baja California, Mexico
Rosenberg J. Romero: Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
Antonio Rodríguez: Centro de Investigación en Ingeniería y Ciencias Aplicadas, Universidad Autónoma del Estado de Morelos, Av. Universidad 1001, Cuernavaca 62209, Morelos, Mexico
Energies, 2021, vol. 14, issue 5, 1-16
Abstract:
The energy consumption for space cooling is growing faster than for any other end-use in buildings, more than tripling between 1990 and 2016. Energy efficiency is an important topic in the drive to reduce the consumption of electricity, particularly in air conditioning. This paper presents a simulation of an absorption cooling system with a parabolic trough collector under dynamic conditions using TRaNsient SYstem Simulation (TRNSYS) software. The thermal analysis seeks to evaluate a storage tank at three different configurations: (1) sensible heat, (2) latent heat, and (3) latent heat incorporating a tempering valve. The latent heat storage tank is a rectangular heat exchanger using MgCl 2 ·6H 2 O as the phase change material, programmed in EES software; in addition, water and synthetic organic fluid were analyzed as heating fluids. The process was analyzed while varying the solar collector area from 20 to 40 m 2 and the storage tank volume from 0.25 to 0.75 m 3 . The results showed that the solar collector of configuration 1 is unable to satisfy the energy demand. Configuration 2 can satisfy the demand with water and a storage tank volume above 0.50 m 3 and 30 m 2 , while configuration 3 can satisfy the demand above 0.50 m 3 and 20 m 2 with water.
Keywords: phase change material; absorption cooling system; parabolic trough collector; tempering valve; thermal energy storage (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (3)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/5/1376/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/5/1376/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:5:p:1376-:d:509432
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().