Maximizing Transfer Efficiency with an Adaptive Wireless Power Transfer System for Variable Load Applications
Jung-Hoon Cho,
Byoung-Hee Lee and
Young-Joon Kim
Additional contact information
Jung-Hoon Cho: Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea
Byoung-Hee Lee: Department of Electronic Engineering, Hanbat National University, Daejeon 34158, Korea
Young-Joon Kim: Department of Electronic Engineering, Gachon University, Seongnam 13120, Korea
Energies, 2021, vol. 14, issue 5, 1-11
Abstract:
Electronic devices usually operate in a variable loading condition and the power transfer efficiency of the accompanying wireless power transfer (WPT) method should be optimizable to a variable load. In this paper, a reconfigurable WPT technique is introduced to maximize power transfer efficiency in a weakly coupled, variable load wireless power transfer application. A series-series two-coil wireless power network with resonators at a frequency of 150 kHz is presented and, under a variable loading condition, a shunt capacitor element is added to compensate for a maximum efficiency state. The series capacitance element of the secondary resonator is tuned to form a resonance at 150 kHz for maximum power transfer. All the capacitive elements for the secondary resonators are equipped with reconfigurability. Regardless of the load resistance, this proposed approach is able to achieve maximum efficiency with constant power delivery and the power present at the load is only dependent on the input voltage at a fixed operating frequency. A comprehensive circuit model, calculation and experiment is presented to show that optimized power transfer efficiency can be met. A 50 W WPT demonstration is established to verify the effectiveness of this proposed approach.
Keywords: magnetic resonant couple; optimization; reconfigurable wireless power transfer; variable load; wireless power transfer (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/5/1417/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/5/1417/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:5:p:1417-:d:510650
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().