Pd Catalysts Supported on Bamboo-Like Nitrogen-Doped Carbon Nanotubes for Hydrogen Production
Arina N. Suboch and
Olga Y. Podyacheva
Additional contact information
Arina N. Suboch: Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
Olga Y. Podyacheva: Boreskov Institute of Catalysis SB RAS, 630090 Novosibirsk, Russia
Energies, 2021, vol. 14, issue 5, 1-13
Abstract:
Bamboo-like nitrogen-doped carbon nanotubes (N-CNTs) were used to synthesize supported palladium catalysts (0.2–2 wt.%) for hydrogen production via gas phase formic acid decomposition. The beneficial role of nitrogen centers of N-CNTs in the formation of active isolated palladium ions and dispersed palladium nanoparticles was demonstrated. It was shown that although the surface layers of N-CNTs are enriched with graphitic nitrogen, palladium first interacts with accessible pyridinic centers of N-CNTs to form stable isolated palladium ions. The activity of Pd/N-CNTs catalysts is determined by the ionic capacity of N-CNTs and dispersion of metallic nanoparticles stabilized on the nitrogen centers. The maximum activity was observed for the 0.2% Pd/N-CNTs catalyst consisting of isolated palladium ions. A ten-fold increase in the concentration of supported palladium increased the contribution of metallic nanoparticles with a mean size of 1.3 nm and decreased the reaction rate by only a factor of 1.4.
Keywords: hydrogen; formic acid; palladium; nitrogen; carbon nanotubes (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/5/1501/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/5/1501/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:5:p:1501-:d:513523
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().