Analysis of Transient Interactions between a PWR Nuclear Power Plant and a Faulted Electricity Grid
Vineet Vajpayee,
Elif Top and
Victor M. Becerra
Additional contact information
Vineet Vajpayee: School of Energy and Electronic Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
Elif Top: School of Energy and Electronic Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
Victor M. Becerra: School of Energy and Electronic Engineering, University of Portsmouth, Portsmouth PO1 3DJ, UK
Energies, 2021, vol. 14, issue 6, 1-31
Abstract:
This paper presents the transient stability analysis of a pressurised water-type nuclear power plant following faults and disturbances affecting the electricity grid to which it is connected. The modelled nuclear plant consists of various integrated subsystems, such as core neutronics and thermal-hydraulics, piping and plenum, pressuriser, steam generator, turbine, governor, and dynamics shaft, in addition to the turbine-speed controller. The nonlinear nuclear power plant model is linearised at the operating point to acquire a linear model for controller design. The turbine-speed control loop effectively enacts a closed-loop implementation of the nuclear power plant connected to the electric grid. The various transient stability enhancement components such as the power system stabiliser, static var compensator, and static synchronous compensator are employed to test performance during severe contingencies. The interaction between the nuclear power plant, electric grid, and protection system is studied under various scenarios such as single-phase fault, three-phase fault, and permanent load loss. The performance of the nonlinear plant is further observed during load-following operation. The dynamic behaviour of the overall system is analysed using simulations in the MATLAB/Simulink/Simscape environment.
Keywords: electric grid; power system; nuclear power plant; pressurised water reactor; transient analysis (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (1)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/6/1573/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/6/1573/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:6:p:1573-:d:515657
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().