EconPapers    
Economics at your fingertips  
 

Testing the Toxicity of Stachybotrys chartarum in Indoor Environments—A Case Study

Marlena Piontek and Katarzyna Łuszczyńska
Additional contact information
Marlena Piontek: Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, PL 65-417 Zielona Góra, Poland
Katarzyna Łuszczyńska: Institute of Environmental Engineering, University of Zielona Góra, Licealna 9, PL 65-417 Zielona Góra, Poland

Energies, 2021, vol. 14, issue 6, 1-12

Abstract: Infestation of interior walls of buildings with fungal mould is a reason for health concern which is exacerbated in energy-efficient buildings that limit air circulation. Both mycological and mycotoxicological studies are needed to determine the potential health hazards to residents. In this paper, a rare case of the occurrence of Stachybotrys chartarum in an apartment building in the Lubuskie Province in Poland has been described. Isolated as the major constituent of a mixed mycobiota, its specific health relevance still needs to be carefully analyzed as its biochemical aptitude for the synthesis of mycotoxins may be expressed at different levels. Therefore, ecotoxicological tests were performed using two bioindicators: Dugesia tigrina Girard and Daphnia magna Straus. D. tigrina was used for the first time to examine the toxicity of S. chartarum . The ecotoxicological tests showed that the analyzed strain belonged to the third and fourth toxicity classes according to Liebmann’s classification. The strain of S. chartarum was moderately toxic on Potato Dextrose Agar (PDA) as a culture medium (toxicity class III), and slightly toxic on Malt Extract Agar (MEA) (toxicity class IV). Toxicity was additionally tested by instrumental analytical methods (LC-MS/MS). This method allowed for the identification of 13 metabolites (five metabolites reported for Stachybotrys and eight for unspecific metabolites). Spirocyclic drimanes were detected in considerable quantities (ng/g); a higher concentration was observed for stachybotryamide (109,000 on PDA and 62,500 on MEA) and lower for stachybotrylactam (27,100 on PDA and 46,300 on MEA). Both may explain the result observed through the bioindicators. Highly toxic compounds such as satratoxins were not found in the sample. This confirms the applicability of the two bioindicators, which also show mutual compatibility, as suitable tools to assess the toxicity of moulds.

Keywords: biotests; moulds; indoor contamination; spirocyclic drimanes; stachybotryamide; stachybotrylactam (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View complete reference list from CitEc
Citations: View citations in EconPapers (1)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/6/1602/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/6/1602/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:6:p:1602-:d:516495

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1602-:d:516495