EconPapers    
Economics at your fingertips  
 

Fractional Order Fuzzy Based Virtual Inertia Controller Design for Frequency Stability in Isolated Hybrid Power Systems

Tarkeshwar Mahto, Rakesh Kumar, Hasmat Malik, S. M. Suhail Hussain and Taha Selim Ustun
Additional contact information
Tarkeshwar Mahto: Electrical and Electronics Engineering Department, SRM University AP, Amravati 522502, India
Rakesh Kumar: Department of Electrical and Electronics Engineering, M S Ramaiah Institute of Technology, Bengaluru 560054, India
Hasmat Malik: Berkeley Education Alliance for Research in Singapore (BEARS), University Town, National University of Singapore (NUS) Campus, Singapore 119077, Singapore
S. M. Suhail Hussain: Fukushima Renewable Energy Institute, AIST (FREA), National Institute of Advanced Industrial Science and Technology (AIST), Koriyama 963-0298, Japan
Taha Selim Ustun: Fukushima Renewable Energy Institute, AIST (FREA), National Institute of Advanced Industrial Science and Technology (AIST), Koriyama 963-0298, Japan

Energies, 2021, vol. 14, issue 6, 1-21

Abstract: In the present era, electrical power system is evolving to an inverter-dominated system from a synchronous machine-based system, with the hybrid power systems (HPS) and renewable energy generators (REGs) increasing penetration. These inverters dominated HPS have no revolving body, therefore, diminishing the overall grid inertia. Such a low system inertia could create issues for HPS with REG (HPSREG) such as system instability and lack of resilience under disturbances. A control strategy, therefore, is required in order to manage this task besides benefitting from the full potential of the REGs. A virtual inertia control for an HPSREG system built with the principle of fractional order (FO) by incorporation of proportional-integral-derivative (PID) controller and fuzzy logic controller (FLC) has been projected. It is utilized by adding virtual inertia into HPSREG system control loop and referred to as FO based fuzzy PID controller for this study. Simulation outcomes states that the advocated FO based fuzzy PID controller has superior control in frequency of the system under frequent load variations. It has been noted that the proposed control scheme exhibits improved efficiency in maintaining specific reference frequency and power tracking as well as disturbance diminution than optimal classic and FO-based controller. It has been validated that, the developed controller effectively delivers preferred frequency and power provision to a low-inertia HPSREG system against high load demand perturbation. In the presented paper, analysis based on sensitivity has also been performed and it has been found that the HPSREG system’s is not effected by system parameter and load variations.

Keywords: frequency and power; virtual inertia; HPSREG system; fractional order; fuzzy logic controller (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (4)

Downloads: (external link)
https://www.mdpi.com/1996-1073/14/6/1634/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/6/1634/ (text/html)

Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.

Export reference: BibTeX RIS (EndNote, ProCite, RefMan) HTML/Text

Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:6:p:1634-:d:517164

Access Statistics for this article

Energies is currently edited by Ms. Agatha Cao

More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().

 
Page updated 2025-03-19
Handle: RePEc:gam:jeners:v:14:y:2021:i:6:p:1634-:d:517164