Gate Drive Controller for Low Voltage DC Hybrid Circuit Breaker
Hyosung Kim
Additional contact information
Hyosung Kim: School of EE & Control Engineering, Kongju National University, Budae-dong, Seobuk-gu, Cheonan-si 31080, Chungnam, Korea
Energies, 2021, vol. 14, issue 6, 1-9
Abstract:
With the advent of direct current (DC) loads such as LED lighting, IT equipment, electric vehicles, and DC powers generated from renewable energy sources, low voltage DC (LVDC) distribution system is becoming a hot issue. One of the hurdles in the LVDC distribution system is arc flash at the contact points that occurs during the circuit is opening. Unlike alternating current, direct current has no zero points and sustains constantly. Therefore, there is a risk of electric fire due to continuous generating arcs when the load current is interrupted with an existing electrical contact type circuit breaker. Recently, the concept of a hybrid circuit breaker that takes advantage of traditional electrical contact type switch and the arcless semiconductor switch has been proposed, but how to cooperatively operate the two switches has become an issue. This paper analyzes the principle of a hybrid circuit breaker for blocking LVDC current and proposes a gate drive controller for it. Through 400V class LVDC cutoff test, the operation of the proposed hybrid circuit breaker is verified and the characteristics are analyzed.
Keywords: low voltage DC (LVDC); hybrid circuit breaker; conduction loss; arcless; gate drive control (search for similar items in EconPapers)
JEL-codes: Q Q0 Q4 Q40 Q41 Q42 Q43 Q47 Q48 Q49 (search for similar items in EconPapers)
Date: 2021
References: View references in EconPapers View complete reference list from CitEc
Citations: View citations in EconPapers (2)
Downloads: (external link)
https://www.mdpi.com/1996-1073/14/6/1753/pdf (application/pdf)
https://www.mdpi.com/1996-1073/14/6/1753/ (text/html)
Related works:
This item may be available elsewhere in EconPapers: Search for items with the same title.
Export reference: BibTeX
RIS (EndNote, ProCite, RefMan)
HTML/Text
Persistent link: https://EconPapers.repec.org/RePEc:gam:jeners:v:14:y:2021:i:6:p:1753-:d:521769
Access Statistics for this article
Energies is currently edited by Ms. Agatha Cao
More articles in Energies from MDPI
Bibliographic data for series maintained by MDPI Indexing Manager ().